viernes, 20 de mayo de 2016

TENDENCIAS GENERALES ACTUALES

Una consideración de fondo. ¿Qué es la actividad matemática?
 
La filosofia prevalente sobre lo que la actividad matemática representa tiene un fuerte influjo, más efectivo a veces de lo que aparenta, sobre las actitudes profundas respecto de la enseñanza matemática. La reforma hacia la «matemática moderna» tuvo lugar en pleno auge de la corriente formalista (Bourbaki) en matemáticas. No es aventurado pensar a priori en una relación causa-efecto y, de hecho, alguna de las personas especialmente influyentes en el movimiento didáctico, como Dieudonné, fueron importantes miembros del grupo Bourbaki. En los últimos quince años, especialmente a partir de la publicación de la tesis doctoral de I. Lakatos (1976), Proofs and refutations, se han producido cambios bastante profundos en el campo de las ideas acerca de lo que verdaderamente es el quehacer matemático.
 
    La actividad científica en general es una exploración de ciertas estructuras de la realidad, entendida ésta en sentido amplio, como realidad fisica o mental. La actividad matemática se enfrenta con un cierto tipo de estructuras que se prestan a unos modos peculiares de
tratamiento, que incluyen:
 
        a) una simbolización adecuada, que permite presentar eficazmente, desde el punto de vista operativo, las entidades que maneja;
 
        b) una manipulación racional rigurosa, que compele al asenso de aquellos que se adhieren a las convenciones iniciales de partida;
 
        c) un dominio efectivo de la realidad a la que se dirige, primero racional, del modelo mental que se construye, y luego, si se pretende, de la realidad exterior modelada.
 
    La antigua definición de la matemática como ciencia del número y de la extensión, no es incompatible en absoluto con la aquí propuesta, sino que corresponde a un estadio de la matemática en que el enfrentamiento con la realidad se había plasmado en dos aspectos fundamentales, la complejidad proveniente de la multiplicidad (lo que da origen al número, a la aritmética) y la complejidad que procede del espacio (lo que da lugar a la geometría, estudio de la extensión). Más adelante el mismo espíritu matemático se habría de enfrentar con:
 
        - la complejidad del símbolo (álgebra);
 
        - la complejidad del cambio y de la causalidad determinística (cálculo);
 
        - la complejidad proveniente de la incertidumbre en la causalidad múltiple incontrolable (probabilidad, estadística);
 
        - complejidad de la estructura formal del pensamiento (lógica matemática)...
 
    La filosofía de la matemática actual ha dejado de preocuparse tan insistentemente como en la primera mitad del siglo sobre los problemas de fundamentación de la matemática, especialmente tras los resultados de Gödel a comienzos de los años 30, para enfocar su atención en el carácter cuasiempírico de la actividad matemática (I. Lakatos), así como en los aspectos relativos a la historicidad e inmersión de la matemática en la cultura de la sociedad en la que se origina (R. L. Wilder), considerando la matemática como un subsistema cultural con características en gran parte comunes a otros sistemas semejantes. Tales cambios en lo hondo del entender y del sentir mismo de los matemáticos sobre su propio quehacer vienen provocando, de forma más o menos consciente, fluctuaciones importantes en las consideraciones sobre lo que la enseñanza matemática debe ser.

 
 
 
  La educación matemática como proceso de «inculturación»
 
    La educación matemática se debe concebir como un proceso de inmersión en las formas propias de proceder del ambiente matemático, a la manera como el aprendiz de artista va siendo imbuido, como por ósmosis, en la forma peculiar de ver las cosas característica de la escuela en la que se entronca. Como vamos a ver en seguida, esta idea tiene profundas repercusiones en la manera de enfocar la enseñanza y aprendizaje de la matemática.



 Continuo apoyo en la intuición directa de lo concreto. Apoyo permanente en lo real
 
    En los años 80 hubo un reconocimiento general de que se había exagerado considerablemente en las tendencias hacia la «matemática moderna» en lo que respecta al énfasis en la estructura abstracta de la matemática. Es necesario cuidar y cultivar la intuición en general, la manipulación operativa del espacio y de los mismos símbolos. Es preciso no abandonar la comprensión e inteligencia de lo que se hace, por supuesto, pero no debemos permitir que este esfuerzo por entender deje pasar a segundo plano los contenidos intuitivos de nuestra mente en su acercamiento a los objetos matemáticos. Si la matemática es una ciencia que participa mucho más de lo que hasta ahora se pensaba del carácter de empírica, sobre todo en su invención, que es mucho más interesante que su construcción formal, es necesario que la inmersión en ella se realice teniendo en cuenta mucho más intensamente la experiencia y la manipulación de los objetos de los que surge. La formalización rigurosa de las experiencias iniciales corresponde a un estadio posterior. A cada fase de desarrollo mental, como a cada etapa histórica o a cada nivel científico, le corresponde su propio rigor.
 
    Para entender esta interacción fecunda entre la realidad y la matemática es necesario acudir, por una parte, a la propia historia de la  matemática, que nos desvela ese proceso de emergencia de nuestra matemática en el tiempo, y por otra parte, a las aplicaciones de la matemática, que nos hacen patentes la fecundidad y potencia de esta ciencia. Con ello se hace obvio cómo la matemática ha procedido de forma muy semejante a las otras ciencias, por aproximaciones sucesivas, por experimentos, por tentativas, unas veces fructuosas, otras estériles, hasta que va alcanzando una forma más madura, aunque siempre perfectible. Nuestra enseñanza ideal debería tratar de reflejar este carácter profundamente humano de la matemática, ganando con ello en asequibilidad, dinamismo, interés y atractivo.

No hay comentarios:

Publicar un comentario